Detection of soybean rust using a multispectral image sensor

نویسندگان

  • Di Cui
  • Youfu Zhao
  • Glen L. Hartman
چکیده

Soybean rust, caused by Phakopsora pachyrhizi, is one of the most destructive diseases for soybean production. It often causes significant yield loss and may rapidly spread from field to field through airborne urediniospores. In order to implement timely fungicide treatments for the most effective control of the disease, it is essential to detect the infection and severity of soybean rust. This research explored feasible methods for detecting soybean rust and quantifying severity. In this study, images of soybean leaves with different rust severity were collected using both a portable spectroradiometer and a multispectral CDD camera. Different forms of vegetation indices were used to investigate the possibility of detecting rust infection. Results indicated that both leaf development stage and rust infection severity changed the surface reflectance within a wide band of spectrum. In general, old leaves with most severe rust infection resulted in lowest reflectance. A difference vegetation index (DVI) showed a positive correlation with reflectance differences. However, it lacks solid evidence to identify such reflectance change was solely caused by rust. As an alternative, three parameters, i.e. ratio of infected area (RIA), lesion color index (LCI) and rust severity index (RSI), were extracted from the multispectral images and used to detect leaf infection and severity of infection. The preliminary results obtained from this laboratory-scale research demonstrated that this multispectral imaging method could quantitatively detect soybean rust. Further tests of field scale are needed to verify the effectiveness and reliability of this sensing method to detect and quantify soybean rust infection in real time field scouting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Spectral Index for Detecting Wheat Yellow Rust Using Sentinel-2 Multispectral Imagery

Yellow rust is one of the most destructive diseases for winter wheat and has led to a significant decrease in winter wheat quality and yield. Identifying and monitoring yellow rust is of great importance for guiding agricultural production over large areas. Compared with traditional crop disease discrimination methods, remote sensing technology has proven to be a useful tool for accomplishing s...

متن کامل

Detection of the wheat rust disease infected farms using Landsat images

The goal of this study is to identify farms which are affected by wheat rust disease. For this, the sensor data of Landsat 7 satellites in growing season of 2013 and 2014 along with some laboratorial data containing reflectance spectrum of leaf and leaf health degree in different levels of disease are used. The reflectance values of leaf are collected by an ASD spectroradiometer in the range of...

متن کامل

Automatic Road Detection and Extraction From MultiSpectral Images Using a New Hierarchical Object-based Method

Road detection and Extraction is one of the most important issues in photogrammetry, remote sensing and machine vision. A great deal of research has been done in this area based on multispectral images, which are mostly relatively good results. In this paper, a novel automated and hierarchical object-based method for detecting and extracting of roads is proposed. This research is based on the M...

متن کامل

Combining of Magnitude and Direction of Change Indices to Unsupervised Change Detection in Multitemporal Multispectral Remote Sensing Images

In remote sensing, image-based change detection techniques, analyze two images acquired over the same area at different times t1 and t2 to identify the changes occurred on the Earth's surface. Change detection approaches are mainly categorized as supervised and unsupervised. Generating the change index is a key step for change detection in multi-temporal remote sensing images. Unsupervised chan...

متن کامل

Foliar Disease Detection in the Field Using Optical Sensor Fusion

The objective of this research was to detect and recognize the plant stress caused by disease in the field conditions by combining hyperspectral reflection information between 450 and 900nm and fluorescence imaging. The results can be used to develop a tractor mounted cost-effective optical device for site-specific pesticide application in order to reduce and optimize pesticide use. The work re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009